Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Sci Total Environ ; : 172704, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663590

RESUMEN

Both water management measures like damming and changes in precipitation as a result of anthropogenic induced climate change have exerted profound effects on the dynamics of streamwater-groundwater interaction (SGI). However, their compound effects on SGI have not been investigated so far. Taking the Fen River of China as an example, this study aims to examine the synergistic impacts of damming and precipitation anomalies on SGI dynamics. The sampling considered the seasonal and interannual variability of precipitation (May and September in 2019 representing a dry year; May and August in 2021 representing a wet year), and long-term daily observational data, including water levels and water discharge were combined to elucidate the compound effects. Precipitation anomalies and damming exert significant individual and combined influences on SGI. Separately, dams and reservoirs reversed the SGI dynamics, significantly increasing the contributions of streamwater to groundwater from 0 to 29 % to 78 % in the dam-affected areas. Further, the groundwater discharge ratios behind the dam (about 60 %) were three times higher than those in front of the dam. Precipitation anomalies significantly amplified interannual variability in SGI patterns, and groundwater discharge ratios increased by 47 % during the dry period (2019) compared to flood period (2021). The combined influence of precipitation anomalies and dam regulation remarkably changed the lateral, vertical, and longitudinal water exchange dynamics. Precipitation anomalies affected the SGI dynamics at the whole watershed scale, whereas dam regulation regimes exhibited a stronger control at the local scale. The compound effects of dam regulation and precipitation anomalies can result in different SGI relationship under various climate scenarios. More attention should be paid to the interrelated feedback mechanisms between damming, extreme precipitation events, and their impact on the watershed-scale hydrological cycle.

2.
Environ Int ; 186: 108657, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38626496

RESUMEN

The increasing frequency of heat waves under the global urbanization and climate change background poses elevating risks of chronic kidney disease (CKD). Nevertheless, there has been no evidence on associations between long-term exposures to heat waves and CKD as well as the modifying effects of land cover patterns. Based on a national representative population-based survey on CKD covering 47,086 adults and high spatial resolution datasets on temperature and land cover data, we found that annual days of exposure to heat waves were associated with increased odds of CKD prevalence. For one day/year increases in HW_975_4d (above 97.5 % of annual maximum temperature and lasting for at least 4 consecutive days), the odds ratio (OR) of CKD was 1.14 (95 %CI: 1.12, 1.15). Meanwhile, stronger associations were observed in regions with lower urbanicity [rural: 1.14 (95 %CI: 1.12, 1.16) vs urban: 1.07 (95 %CI: 1.03, 1.11), Pinteraction < 0.001], lower water body coverage [lower: 1.14 (95 %CI: 1.12, 1.16) vs higher: 1.02 (95 %CI: 0.98, 1.05), Pinteraction < 0.001], and lower impervious area coverage [lower: 1.16 (95 %CI: 1.14, 1.18) vs higher: 1.06 (95 %CI: 1.03, 1.10), Pinteraction = 0.008]. In addition, this study found disparities in modifying effects of water bodies and impervious areas in rural and urban settings. In rural regions, the associations between heat waves and CKD prevalence showed a consistent decreasing trend with increases in both proportions of water bodies and impervious areas (Pinteraction < 0.05). Nevertheless, in urban regions, we observed significant effect modification by water bodies, but not by impervious areas. Our study indicates the need for targeted land planning as part of adapting to the kidney impacts of heat waves, with a focus on urbanization in rural regions, as well as water body construction and utilization in both rural and urban regions.


Asunto(s)
Cambio Climático , Calor , Insuficiencia Renal Crónica , Urbanización , China/epidemiología , Humanos , Insuficiencia Renal Crónica/epidemiología , Calor/efectos adversos , Masculino , Femenino , Persona de Mediana Edad , Prevalencia , Adulto , Anciano
3.
Sci Total Environ ; 924: 171561, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38458472

RESUMEN

Ambient ozone (O3) is recognized as a significant air pollutant with implications for cardiorespiratory health, yet the effects of indoor O3 exposure have received less consideration. Furthermore, while sleep occupies one-third of life, research on the health consequences of O3 exposure during this crucial period is scarce. This study aimed to investigate associations of indoor O3 during sleep with cardiorespiratory function and potential predisposing factors. A prospective study among 81 adults was conducted in Beijing, China. Repeated measurements of cardiorespiratory indices reflecting lung function, airway inflammation, cardiac autonomic function, blood pressure, systemic inflammation, platelet and glucose were performed on each subject. Real-time concentrations of indoor O3 during sleep were monitored. Associations of O3 with cardiorespiratory indices were evaluated using linear mixed-effect model. Effect modification by baseline lifestyles (diet, physical activity, sleep-related factors) and psychological status (stress and depression) were investigated through interaction analysis. The average indoor O3 concentration during sleep was 20.3 µg/m3, which was well below current Chinese indoor air quality standard of 160 µg/m3. O3 was associated with most respiratory indicators of decreased airway function except airway inflammation; whereas the cardiovascular effects were only manifested in autonomic dysfunction and not in others. An interquartile range increases in O3 at 6-h average was associated with changes of -3.60 % (95 % CI: -6.19 %, -0.93 %) and -9.60 % (95 % CI: -14.53 %, -4.39 %) in FVC and FEF25-75, respectively. Further, stronger effects were noted among participants with specific dietary patterns, poorer sleep and higher level of depression. This study provides the first general population-based evidence that low-level exposure to indoor O3 during sleep has greater effects on the respiratory system than on the cardiovascular system. Our findings identify the respiratory system as an important target for indoor O3 exposure, and particularly highlight the need for greater awareness of indoor air quality, especially during sleep.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Adulto , Humanos , Contaminación del Aire/análisis , Estudios Prospectivos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Ozono/efectos adversos , Ozono/análisis , China , Inflamación , Material Particulado/análisis , Exposición a Riesgos Ambientales/análisis
4.
Sci Total Environ ; 918: 170574, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38311085

RESUMEN

Nitrate (NO3-) pollution has attracted widespread attention as a threat to human health and aquatic ecosystems; however, elucidating the controlling factors behind nitrate dynamics under the context of changeable hydrological processes, particularly the interactions between streamwater and groundwater (SW-GW), presents significant challenges. A multi-tracer approach, integrating physicochemical and isotopic tracers (Cl-, δ2H-H2O, δ18O-H2O, δ15N-NO3- and δ18O-NO3-), was employed to identify the response of nitrate dynamics to SW-GW interaction in the Fen River Basin. The streamwater and groundwater NO3- concentrations varied greatly with space and time. Sewage and manure (28 %-73 %), fertilizer (14 %-36 %) and soil organic nitrogen (12 %-28 %) were the main NO3- sources in water bodies. Despite the control of land use type on streamwater nitrate dynamics in losing sections, SW-GW interactions drove NO3- dynamics in both streamwater and groundwater under most circumstances. In gaining streams, streamwater nitrate dynamics were influenced either by groundwater dilution or microbial nitrification, depending on whether groundwater discharge ratios exceeded or fell below 25 %, respectively. In losing streams, groundwater nitrate content increased with streamwater infiltration time, but the influence was mainly limited within 3 km from the river channel. This study provides a scientific basis for the effective management of water nitrate pollution at the watershed scale.

5.
Environ Geochem Health ; 46(2): 70, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353840

RESUMEN

OBJECTIVES: Chronic kidney disease (CKD) is a global public health concern, and accumulating evidence has indicated that air pollution increases the odds of CKD. However, a limited number of studies have examined the long-term effects of ambient fine particulate matter (PM2.5) components on the risk of CKD among general population; thus, major knowledge gaps remain. METHODS: Using data from a nationwide representative cross-sectional survey in China and a validated PM2.5 composition dataset, we established generalized linear models to quantify the association between five major components of PM2.5 and CKD prevalence. RESULTS: There were significant associations between long-term exposure to three PM2.5 components [including black carbon (BC), sulfate (SO42-), organic matter (OM)] and increased odds of CKD prevalence. Along with an interquartile range (IQR) increment in BC (3.3 µg/m3), SO42- (9.7 µg/m3), and OM (16.2 µg/m3) at a 4-year moving average, the odds ratios (ORs) for CKD prevalence were 1.28 (95% CI 1.07, 1.54), 1.23 (95% CI 1.03, 1.45), and 1.23 (95% CI 1.02, 1.47), respectively. We did not detect any significant association of the other two PM2.5 components [nitrate (NO3-) or ammonium (NH4+)] with CKD prevalence. Stratified analyses revealed no differences (P ≥ 0.05) in the effect estimates of subgroups based on administrative region, sex, age, and other demographic characteristics. For instance, along with an IQR increment in BC at a 4-year moving average, the ORs of CKD prevalence among males and females were 1.30 (95% CI 0.98, 1.73) and 1.29 (95% CI 1.01, 1.65), respectively. The odds of CKD were generally higher with increasing PM2.5 composition concentration. CONCLUSIONS: Our study demonstrated that long-term exposure to specific PM2.5 components including BC, SO42-, and OM increased CKD risk in the general population. This study could provide new insights into source-directed PM2.5 control and CKD prevention.


Asunto(s)
Contaminación del Aire , Insuficiencia Renal Crónica , Femenino , Masculino , Humanos , Estudios Transversales , Prevalencia , China/epidemiología , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/epidemiología , Hollín
6.
Toxics ; 12(1)2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38251031

RESUMEN

BACKGROUND: The burden of cardiovascular diseases caused by ambient particulate air pollution is universal. An increasing number of studies have investigated the potential effects of exposure to particulate air pollution on endothelial function, which is one of the important mechanisms for the onset and development of cardiovascular disease. However, no previous study has conducted a summary analysis of the potential effects of particulate air pollution on endothelial function. OBJECTIVES: To summarize the evidence for the potential effects of short-term exposure to ambient particulate air pollution on endothelial function based on existing studies. METHODS: A systematic literature search on the relationship between ambient particulate air pollution and biomarkers of endothelial function including endothelin-1 (ET-1), E-selectin, intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) was conducted in PubMed, Scopus, EMBASE, and Web of Science up to 20 May 2023. Subsequently, a meta-analysis was conducted using a random effects model. RESULTS: A total of 18 studies were included in this meta-analysis. A 10 µg/m3 increase in short-term exposure to ambient PM2.5 was associated with a 1.55% (95% CI: 0.89%, 2.22%) increase in ICAM-1 and a 1.97% (95% CI: 0.86%, 3.08%) increase in VCAM-1. The associations of ET-1 (0.22%, 95% CI: -4.94%, 5.65%) and E-selectin (3.21%, 95% CI: -0.90% 7.49%) with short-term exposure to ambient PM2.5 were statistically insignificant. CONCLUSION: Short-term exposure to ambient PM2.5 pollution may significantly increase the levels of typical markers of endothelial function, including ICAM-1 and VCAM-1, suggesting potential endothelial dysfunction following ambient air pollution exposure.

7.
BMC Public Health ; 23(1): 1956, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37814263

RESUMEN

BACKGROUND: Lower extremity deep vein thrombosis (LEDVT) after surgical operations is a common and fatal disease leading to unfavorable outcomes including death. Nevertheless, there has been insufficient evidence on the associations between ambient air pollution and LEDVT, particularly studies from developing regions. METHODS: Based on 302 LEDVT cases and 302 controls in a general hospital in Beijing, China, this unmatched retrospective case-control study investigated the associations of fine particulate matter (PM2.5), inhalable particulate matter (PM10), and ozone (O3) with odds of LEDVT. RESULTS: Per 10 µg/m3 increase in PM2.5, PM10, and O3 at 3-month, 6-month, and 2-year average was associated with increased LEDVT odds [odds ratios (ORs) for PM2.5: 1.10 (95%CI: 1.05, 1.14), 1.14 (95%CI: 1.09, 1.18), and 1.30 (95%CI: 1.06, 1.61); ORs for PM10: 1.06 (95%CI: 1.02, 1.10), 1.12 (95%CI: 1.08, 1.16), and 1.29 (95%CI: 1.03, 1.61); ORs for O3: 1.00 (95%CI: 0.96, 1.04), 1.16 (95%CI: 1.02, 1.31), and 2.08 (95%CI: 1.03, 4.18), respectively]. The stratified analyses, exposure-responses curves, and sensitivity analyses further highlighted the robustness of our findings. CONCLUSIONS: Long-term exposures to ambient PM2.5, PM10, and O3 may increase the risk of LEDVT in patients after surgical operations. The results may be implicated in the prevention and control of adverse clinical outcomes of surgical patients associated with ambient air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Humanos , Material Particulado/efectos adversos , Material Particulado/análisis , Ozono/efectos adversos , Ozono/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Estudios Retrospectivos , Estudios de Casos y Controles , Beijing , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , China/epidemiología , Dióxido de Nitrógeno/análisis , Extremidad Inferior/cirugía
8.
Mil Med Res ; 10(1): 41, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37670366

RESUMEN

BACKGROUND: Climate change profoundly shapes the population health at the global scale. However, there was still insufficient and inconsistent evidence for the association between heat exposure and chronic kidney disease (CKD). METHODS: In the present study, we studied the association of heat exposure with hospitalizations for cause-specific CKD using a national inpatient database in China during the study period of hot season from 2015 to 2018. Standard time-series regression models and random-effects meta-analysis were developed to estimate the city-specific and national averaged associations at a 7 lag-day span, respectively. RESULTS: A total of 768,129 hospitalizations for CKD was recorded during the study period. The results showed that higher temperature was associated with elevated risk of hospitalizations for CKD, especially in sub-tropical cities. With a 1 °C increase in daily mean temperature, the cumulative relative risks (RR) over lag 0-7 d were 1.008 [95% confidence interval (CI) 1.003-1.012] for nationwide. The attributable fraction of CKD hospitalizations due to high temperatures was 5.50%. Stronger associations were observed among younger patients and those with obstructive nephropathy. Our study also found that exposure to heatwaves was associated with added risk of hospitalizations for CKD compared to non-heatwave days (RR = 1.116, 95% CI 1.069-1.166) above the effect of daily mean temperature. CONCLUSIONS: Short-term heat exposure may increase the risk of hospitalization for CKD. Our findings provide insights into the health effects of climate change and suggest the necessity of guided protection strategies against the adverse effects of high temperatures.


Asunto(s)
Calor , Insuficiencia Renal Crónica , Humanos , China , Ciudades , Hospitalización , Factores de Tiempo
9.
Chemosphere ; 341: 140009, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37648166

RESUMEN

Increasing studies have linked air pollution to kidney dysfunction, however, the associations between the mixture of air pollutants and kidney function and potential effect modifiers remain unclear. We aimed to investigate whether obese adults were more susceptible than normal-weight ones to the joint effects of multiple air pollutants on kidney function and further to explore effect modification by free fatty acids (FFAs). Forty obese and 49 normal-weight adults were recruited from a panel study (252 follow-up visits). Individual exposure levels of air pollutants (PM2.5, PM10, O3, NO2, SO2 and CO) were estimated. Glomerular function (cystatin C (CysC) and estimated glomerular filtration rate (eGFR)) and tubular function (neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1) were evaluated. Plasma levels of FFAs including trans fatty acids (TFAs) and essential fatty acids (EFAs) were quantified using targeted metabolomics. Bayesian kernel machine regression model was applied to estimate the associations between the mixture of air pollutants and kidney function. The results showed significant joint effects of air pollutants on kidney function indicators. In the normal-weight group, the mixture of air pollutants was significantly associated with CysC and eGFRcr-cys when the mixture was at or above its 70 percentile compared with the median, where O3 was identified as the key pollutant. In the obese group, a significantly positive association between the pollutant mixture and NGAL was observed in addition to trends in CysC and eGFRcr-cys, mainly driven by SO2. Interaction analysis suggested that the associations of air pollutants with kidney function were augmented by TFAs in both groups and weakened by EFAs in the normal-weight group. This study highlighted the renal adverse effects of air pollutants and modification of FFAs, which has implications for target prevention for kidney dysfunction associated with air pollution, especially among vulnerable populations.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Adulto , Humanos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Ácidos Grasos no Esterificados , Lipocalina 2/análisis , Teorema de Bayes , Contaminación del Aire/análisis , Contaminantes Ambientales/análisis , Obesidad/inducido químicamente , Material Particulado/análisis , Dióxido de Nitrógeno/análisis , China
10.
Environ Pollut ; 336: 122446, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37625771

RESUMEN

Elucidating the associations between environmental noise and heart rate variability (HRV) would be beneficial for the prevention and control of detrimental cardiovascular changes. Obese people have been found to manifest heightened susceptibility to the adverse effects of noise on HRV. However, the underlying mechanisms remain unclear. Based on 53 normal-weight and 44 obese young adults aged 18-26 years in Beijing, China, this study aimed to investigate the role of obesity-related cardiometabolic indicators for associations between short-term environmental noise exposure and HRV in the real-world context. The participants underwent personal noise exposure and ambulatory electrocardiogram monitoring using portable devices at 5-min intervals for 24 continuous hours. Obesity-related blood pressure, glucose and lipid metabolism, and inflammatory indicators were subsequently examined. Generalized mixed-effect models were used to estimate the associations between noise exposure and HRV parameters. The C-peptide, homeostasis model assessment of insulin resistance (HOMA-IR), and leptin levels were higher in obese participants compared to normal-weight participants. We observed amplified associations between short-term noise exposure and decreases in HRV among participants with higher C-peptide, HOMA-IR, and leptin levels. For instance, a 1 dB(A) increment in 3 h-average noise exposure level preceding each measurement was associated with changes of -0.20% (95%CI: -0.45%, 0.04%) and -1.35% (95%CI: -1.85%, -0.86%) in standard deviation of all normal to normal intervals (SDNN) among participants with lower and higher C-peptide levels, respectively (P for interaction <0.05). Meanwhile, co-existing fine particulate matter (PM2.5) could amplify the associations between noise and HRV among obese participants and participants with higher C-peptide, HOMA-IR, and leptin levels. The more apparent associations of short-term exposure to environmental noise with HRV and the effect modification by PM2.5 may be partially explained by the higher C-peptide, HOMA-IR, and leptin levels of obese people.

11.
J Transl Med ; 21(1): 532, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37550679

RESUMEN

BACKGROUND: Glioblastoma (GBM) is a brain tumor with the highest level of malignancy and the worst prognosis in the central nervous system. Mitochondrial metabolism plays a vital role in the occurrence and development of cancer, which provides critical substances to support tumor anabolism. Mito-LND is a novel small-molecule inhibitor that can selectively inhibit the energy metabolism of tumor cells. However, the therapeutic effect of Mito-LND on GBM remains unclear. METHODS: The present study evaluated the inhibitory effect of Mito-LND on the growth of GBM cells and elucidated its potential mechanism. RESULTS: The results showed that Mito-LND could inhibit the survival, proliferation and colony formation of GBM cells. Moreover, Mito-LND induced cell cycle arrest and apoptosis. Mechanistically, Mito-LND inhibited the activity of mitochondrial respiratory chain complex I and reduced mitochondrial membrane potential, thus promoting ROS generation. Importantly, Mito-LND could inhibit the malignant proliferation of GBM by blocking the Raf/MEK/ERK signaling pathway. In vivo experiments showed that Mito-LND inhibited the growth of GBM xenografts in mice and significantly prolonged the survival time of tumor-bearing mice. CONCLUSION: Taken together, the current findings support that targeting mitochondrial metabolism may be as a potential and promising strategy for GBM therapy, which will lay the theoretical foundation for further clinical trials on Mito-LND in the future.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Animales , Ratones , Glioblastoma/patología , Línea Celular Tumoral , Transducción de Señal , Apoptosis , Neoplasias Encefálicas/patología , Proliferación Celular
12.
Sci Total Environ ; 897: 165360, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37419345

RESUMEN

The loess-covered region accounts for ∼10 % of global land surface. Because of dry climate and thick vadose zones, the subsurface water flux is low but the water storage is relatively large . As a result, the groundwater recharge mechanism is complicated and currently controversial (e.g., piston flow or dual mode with piston and preferential flow). Taking typical tablelands in China's Loess Plateau as example study area, this study aims to qualitatively and quantitively evaluate the forms/rates and controls of groundwater recharge considering space and time. We collected 498 precipitation, soil water and groundwater samples in 2014-2021 for hydrochemical and isotopic analysis (Cl-, NO3-, δ18O, δ2H, 3H and 14C). A graphical method was employed to determine appropriate model to correct 14C age. Dual model exhibited in the recharge: regional-scale piston flow and local-scale preferential flow. Piston flow dominated groundwater recharge with a proportion of 77 %-89 %. Preferential flow gradually declined with increasing water table depths, and the upper depth limit may be <40 m. The dynamics of tracers proved that mixing and dispersion effects of aquifers limited the ability of tracers to capture preferential flow at short-time scales. Long-term average potential recharge (79 ± 49 mm/year) was close to actual recharge (85 ± 41 mm/year) at the regional scale, indicating the hydraulic equilibrium between unsaturated and saturated zones. The thickness of vadose zone controlled recharge forms, and precipitation dominated the potential and actual recharge rates. Land-use change can also affect the potential recharge rates at point and field scales but maintain the dominance of piston flow. The revealed spatially-varied recharge mechanism is useful for groundwater modeling and the method can be referred for studying recharge mechanism in thick aquifers.

13.
Huan Jing Ke Xue ; 44(6): 3174-3183, 2023 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-37309936

RESUMEN

The Wuding River Basin is a first-class tributary of the Yellow River, and the quality of its water ecological environment has a profound impact on the ecological protection and high-quality development of the Yellow River Basin. In order to identify the source of nitrate pollution in the Wuding River Basin, surface water samples of the Wuding River were collected from 2019 to 2021, and the temporal and spatial distribution characteristics and influencing factors of nitrate concentration in surface water in the basin were explored. Nitrogen and oxygen isotope tracer technology and the MixSIAR model were used to qualitatively and quantitatively determine the sources of surface water nitrate and their contribution rates. The results showed that there were significant spatial and temporal differences in nitrate concentrations in the Wuding River Basin. In terms of time, the mean concentration of NO-3-N in surface water in the wet season was higher than that in the flat-water period; spatially, the mean concentration of NO-3-N in the downstream surface water was higher than that in the upstream. The spatial and temporal differences in surface water nitrate concentrations were mainly affected by rainfall runoff, soil types, and land use types. The main sources of nitrates in the surface water of the Wuding River Basin during the wet season were domestic sewage, manure, chemical fertilizers, and soil organic nitrogen, whose contribution rates were 43.3%, 27.6%, and 22.1%, respectively, and the contribution rate of precipitation was only 7.0%. There were differences in the contribution rate of nitrate pollution sources in surface water of different river sections. The contribution rate of soil nitrogen in the upstream was significantly higher than that in the downstream, which was 26.5%. The contribution rate of domestic sewage and manure in the downstream was significantly higher than that in the upstream, which was 48.9%. To provide a basis for the analysis of nitrate sources and pollution control in Wuding River and even rivers in arid and semi-arid regions.

14.
J Hazard Mater ; 454: 131550, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37148791

RESUMEN

Air pollution contributes substantially to the development of chronic obstructive pulmonary disease (COPD). To date, the effect of air pollution on oxygen saturation (SpO2) during sleep and potential susceptibility factors remain unknown. In this longitudinal panel study, real-time SpO2 was monitored in 132 COPD patients, with 270 nights (1615 h) of sleep SpO2 recorded. Exhaled nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) were measured to assess airway inflammatory characteristics. Exposure levels of air pollutants were estimated by infiltration factor method. Generalized estimating equation was used to investigate the effect of air pollutants on sleep SpO2. Ozone, even at low levels (<60 µg/m3), was significantly associated with decreased SpO2 and extended time of oxygen desaturation (SpO2 < 90%), especially in the warm season. The associations of other pollutants with SpO2 were weak, but significant adverse effects of PM10 and SO2 were observed in the cold season. Notably, stronger effects of ozone were observed in current smokers. Consistently, smoking-related airway inflammation, characterized by higher levels of exhaled CO and H2S but lower NO, significantly augmented the effect of ozone on SpO2 during sleep. This study highlights the importance of ozone control in protecting sleep health in COPD patients.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Ozono , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Contaminantes Atmosféricos/análisis , Saturación de Oxígeno , Material Particulado/análisis , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , Enfermedad Pulmonar Obstructiva Crónica/epidemiología , Enfermedad Pulmonar Obstructiva Crónica/inducido químicamente , Ozono/análisis , Fenotipo , Fumar/efectos adversos
15.
Front Pharmacol ; 14: 1073929, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36959858

RESUMEN

Glioblastoma multiforme (GBM) is a brain tumor with high mortality and recurrence rate. Radiotherapy and chemotherapy after surgery are the main treatment options available for GBM. However, patients with glioblastoma have a grave prognosis. The major reason is that most GBM patients are resistant to radiotherapy. UBA1 is considered an attractive potential anti-tumor therapeutic target and a key regulator of DNA double-strand break repair and genome replication in human cells. Therefore, we hypothesized that TAK-243, the first-in-class UBA1 inhibitor, might increase GBM sensitivity to radiation. The combined effect of TAK-243 and ionizing radiation on GBM cell proliferation, and colony formation ability was detected using CCK-8, colony formation, and EdU assays. The efficacy of TAK-243 combined with ionizing radiation for GBM was further evaluated in vivo, and the mechanism of TAK-243 sensitizing radiotherapy was preliminarily discussed. The results showed that TAK-243, in combination with ionizing radiation, significantly inhibited GBM cell proliferation, colony formation, cell cycle arrest in the G2/M phase, and increased the proportion of apoptosis. In addition, UBA1 inhibition by TAK-243 substantially increased the radiation-induced γ-H2AX expression and impaired the recruitment of the downstream effector molecule 53BP1. Therefore, TAK-243 inhibited the radiation-induced DNA double-strand break repair and thus inhibited the growth of GBM cells. Our results provided a new therapeutic strategy for improving the radiation sensitivity of GBM and laid a theoretical foundation and experimental basis for further clinical trials.

16.
Eur Heart J ; 44(18): 1622-1632, 2023 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-36893798

RESUMEN

AIMS: The available literature on morbidity risk of cardiovascular diseases associated with ambient ozone pollution is still limited. This study examined the potential acute effects of exposure to ambient ozone pollution on hospital admissions of cardiovascular events in China. METHODS AND RESULTS: A two-stage multi-city time-series study approach was used to explore the associations of exposure to ambient ozone with daily hospital admissions (n = 6 444 441) for cardiovascular events in 70 Chinese cities of prefecture-level or above during 2015-17. A 10 µg/m3 increment in 2-day average daily 8 h maximum ozone concentrations was associated with admission risk increases of 0.46% [95% confidence interval (CI): 0.28%, 0.64%] in coronary heart disease, 0.45% (95% CI: 0.13%, 0.77%) in angina pectoris, 0.75% (95% CI: 0.38%, 1.13%) in acute myocardial infarction (AMI), 0.70% (95% CI: 0.41%, 1.00%) in acute coronary syndrome, 0.50% (95% CI: 0.24%, 0.77%) in heart failure, 0.40% (95% CI: 0.23%, 0.58%) in stroke and 0.41% (95% CI: 0.22%, 0.60%) in ischemic stroke, respectively. The excess admission risks for these cardiovascular events associated with high ozone pollution days (with 2-day average 8-h maximum concentrations ≥100 µg/m3 vs. < 70 µg/m3) ranged from 3.38% (95% CI: 1.73%, 5.06%) for stroke to 6.52% (95% CI: 2.92%, 10.24%) for AMI. CONCLUSION: Ambient ozone was associated with increased hospital admission risk for cardiovascular events. Greater admission risks for cardiovascular events were observed under high ozone pollution days. These results provide evidence for the harmful cardiovascular effects of ambient ozone and call for special attention on the control of high ozone pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Infarto del Miocardio , Ozono , Accidente Cerebrovascular , Humanos , Ozono/efectos adversos , Ozono/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Infarto del Miocardio/epidemiología , Accidente Cerebrovascular/epidemiología , Hospitales
17.
Environ Pollut ; 320: 121079, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36640521

RESUMEN

Ambient air pollution exposure may increase the risk of obesity, but the population susceptibility associated with urbanicity has been insufficiently investigated. Based on a nationwide representative cross-sectional survey on 44,544 adults, high-resolution night light satellite remote sensing products, and multi-source ambient air pollution inversion data, the present study evaluated the associations of fine particulate matter (PM2.5) and nitrogen dioxide (NO2) concentrations with the prevalence of obesity and abdominal obesity. We further calculated the associations in regions with different urbanicity levels characterized by both administrative classification of urban/rural regions and night light index (NLI). We found that 10 µg/m3 increments in PM2.5 at 1-year moving average and in NO2 at 5-year moving average were associated with increased prevalence of obesity [odds ratios (OR) = 1.16 (1.14, 1.19); 1.12 (1.09, 1.15), respectively] and abdominal obesity [OR = 1.08 (1.07, 1.10); 1.07 (1.05, 1.09), respectively]. People in rural regions experienced stronger adverse effects than those in urban regions. For instance, a 10 µg/m3 increment in PM2.5 was associated with stronger odds of obesity in rural regions than in urban regions [OR = 1.27 (1.23, 1.31) vs 1.10 (1.05, 1.14), P for interaction <0.001]. In addition, lower NLI values were associated with constantly amplified associations of PM2.5 and NO2 with obesity and abdominal obesity (all P for interaction <0.001). In summary, people in less urbanized regions are more susceptible to the adverse effects of ambient air pollution on obesity, suggesting the significance of collaborative planning of urbanization development and air pollution control, especially in less urbanized regions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Adulto , Humanos , Contaminantes Atmosféricos/análisis , Estudios Transversales , Dióxido de Nitrógeno/análisis , Obesidad Abdominal/inducido químicamente , Prevalencia , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/análisis , Material Particulado/análisis , Obesidad/epidemiología , Obesidad/inducido químicamente , China/epidemiología
18.
Sci Total Environ ; 856(Pt 1): 159014, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36162568

RESUMEN

The cardiometabolic effects of air pollution in the context of mixtures and the underlying mechanisms remain not fully understood. This study aims to investigate the joint effect of air pollutant mixtures on a broad range of cardiometabolic parameters, examine the susceptibility of obese individuals, and determine the role of circulating fatty acids. In this panel study, metabolically healthy normal-weight (MH-NW, n = 49) and obese (MHO, n = 39) adults completed three longitudinal visits (257 person-visits in total). Personal exposure levels of PM2.5, PM10, O3, NO2, SO2, CO and BC were estimated based on fixed-site monitoring data, time-activity logs and infiltration factor method. Blood pressure, glycemic homeostasis, lipid profiles, systematic inflammation and coagulation biomarkers were measured. Targeted metabolomics was used to quantify twenty-eight plasma free fatty acids (FFAs). Bayesian kernel machine regression models were applied to establish the exposure-response relationships and identify key pollutants. Significant joint effects of measured air pollutants on systematic inflammation and coagulation biomarkers were observed in the MHO group, instead of the MH-NW group. Lipid profiles showed the most significant changes in both groups and O3 contributed the most to the total effect. Specific FFA patterns were identified, and de novo lipogenesis (DNL)-related pattern was most closely related to blood lipid profiles. In particular, interaction analysis suggested that DNL-related FFA pattern augmented the effects of O3 on triglyceride (TG, Pinteraction = 0.040), high-density lipoprotein cholesterol (HDL-C, Pinteraction = 0.106) and TG/HDL-C (Pinteraction = 0.020) in the MHO group but not MH-NW group. This modification was further confirmed by interaction analysis with estimated activity of SCD1, a key enzyme in the DNL pathway. Therefore, despite being metabolically healthy, obese subjects have a higher cardiometabolic susceptibility to air pollution, especially O3, and the DNL pathway may represent an intrinsic driver of lipid susceptibility. This study provides new insights into the cardiometabolic susceptibility of obese individuals to air pollution.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Enfermedades Cardiovasculares , Adulto , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Ácidos Grasos no Esterificados , Material Particulado/efectos adversos , Material Particulado/análisis , Teorema de Bayes , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Obesidad/epidemiología , Lípidos/análisis , Biomarcadores/análisis , Inflamación
19.
Chemosphere ; 308(Pt 3): 136437, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36126736

RESUMEN

Wearing a respirator is generally the most convenient individual intervention against ambient particulate matter (PM), and therefore there has been considerable research into its effectiveness. However, the effects of respirator intervention under different PM concentration settings have been insufficiently elucidated. We conducted a randomized, blinded, crossover intervention study in four representative cities in China in which 128 healthy university students spent 2-h walking along a busy road wearing either a real or a sham respirator and then spent the next 5-h indoors away from traffic pollution. Lung function, blood pressure, and heart rate variability were continuously measured throughout the visit. Linear mixed-effect models were fitted to evaluate the protective effects of respirator intervention on the cardiopulmonary indicators. Results showed that the beneficial effects of respirator intervention were only occasionally significant at specific time points or in specific cities or in selected parameters. Overall, respirator intervention was associated with reduced SBP (6.2 vs. 11.5 mmHg compared to baseline, p < 0.05) and increased LF (44 vs. 35 ms2 compared to baseline, p < 0.05) over the 2-h walk, but no significant effects were found over the 7-h period. Respirators have significant effect modifications on the associations between PM2.5/PM10 and the cardiopulmonary indicators, but the directions of effects were inconsistent. The intercity difference in the effects of respirator intervention was found significant, with Taiyuan and Shanghai to be the two cities with lower personal PM concentrations but more pronounced benefits. In conclusion, reducing personal exposure to PM can have some beneficial effects in some scenarios. However, respirators may not provide sufficient protection from air pollution overall, and we should avoid over-reliance on respirators and accelerate efforts to reduce emissions of pollutants in the first place. Despite standardized procedures, we found inconsistency in results across cities, consistent with the previous literature.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , China , Ciudades , Exposición a Riesgos Ambientales/análisis , Humanos , Material Particulado/análisis , Ventiladores Mecánicos , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...